The role of time on ischemic stroke progression

Marta Rubiera, MD PhD Stroke Neurologist Hospital Vall d'Hebron

Supported by Bayer, Bristol-Myers Squibb and Pfizer Alliance, Boehringer Ingelheim, Daiichi Sankyo Europe GmbH and Medtronic in the form of educational grants. The scientific programme has not been influenced in any way by its sponsors.

Declaration of Interest

Nothing to declare

Time Is Brain—Quantified

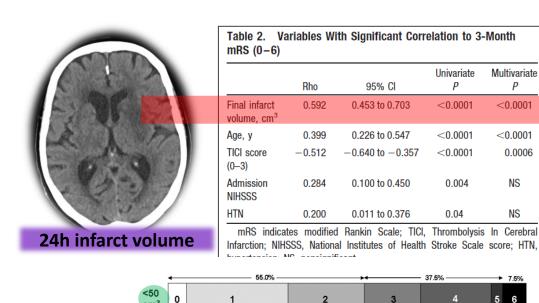
Jeffrey L. Saver, MD

Stroke. 2006;37:263-266.

Average infart growth: 5.4 mL / h

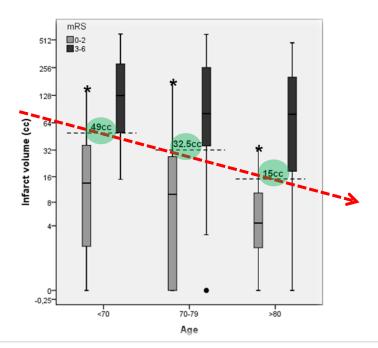
BRAIN

Estimated Pace of Neural Circuitry Loss in Typical Large Vessel, Supratentorial Acute Ischemic Stroke

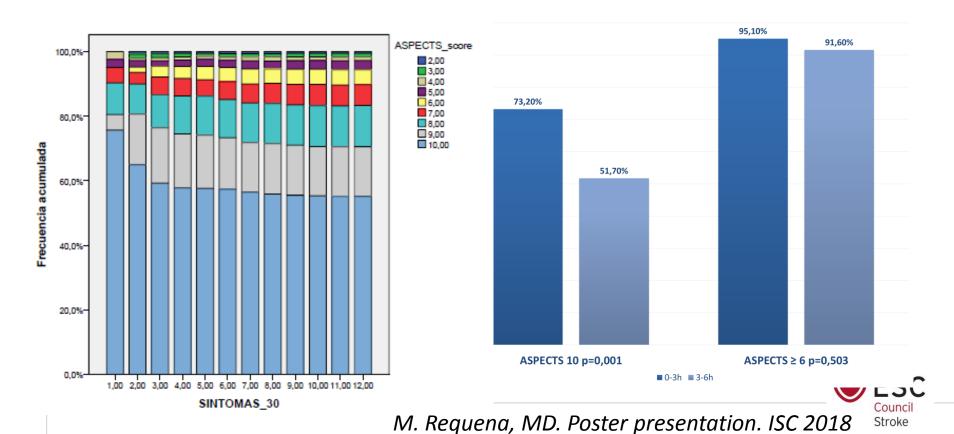

	Neurons Lost	Synapses Lost	Myelinated Fibers Lost	Accelerated Aging
Per Stroke	1.2 billion	8.3 trillion	7140 km/4470 miles	36 y
Per Hour	120 million	830 billion	714 km/447 miles	3.6 y
Per Minute	1.9 million	14 billion	12 km/7.5 miles	3.1 wk
Per Second	32 000	230 million	200 meters/218 yards	8.7 h

Infarct Volume Is a Pivotal Biomarker After Intra-Arterial Stroke Therapy

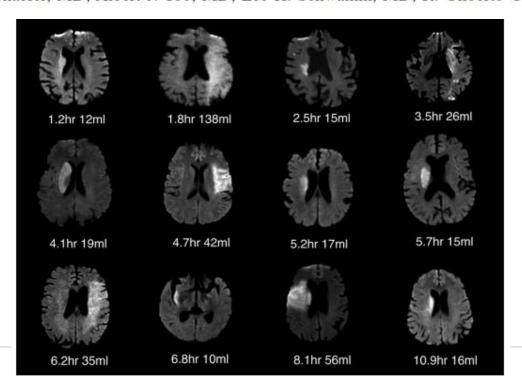
Albert J. Yoo, MD*; Zeshan A. Chaudhry, MD*; Raul G. Nogueira, MD; Michael H. Lev, MD; Pamela W. Schaefer, MD; Lee H. Schwamm, MD; Joshua A. Hirsch, MD; R. Gilberto González, MD, PhD (*Stroke.* 2012;43:1323-1330.)



Age-adjusted infarct volume threshold for good outcome after endovascular treatment

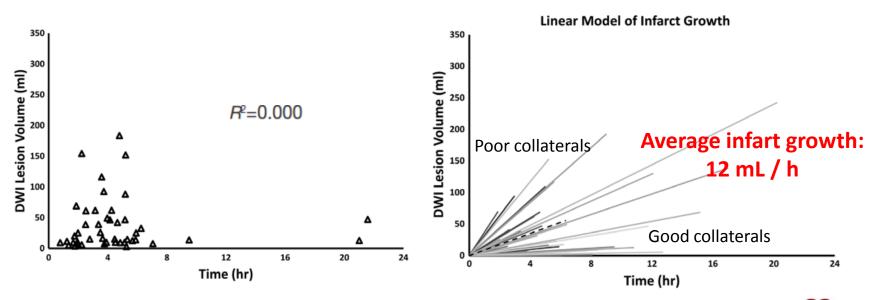

Marc Ribo, ¹ Alan Flores, ¹ Eloy Mansilla, ¹ Marta Rubiera, ¹ Alejandro Tomasello, ² Pilar Coscojuela, ² Jorge Pagola, ¹ David Rodriguez-Luna, ¹ Marian Muchada, ¹ José Alvarez-Sabín, ¹ Carlos A Molina ¹

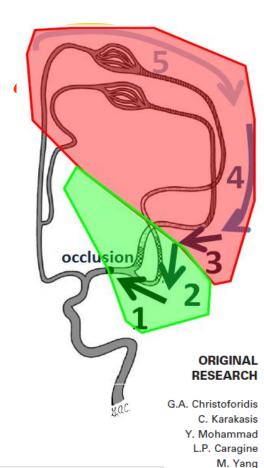
J NeuroIntervent Surg 2014;



<6hours Code Stroke Catalunya 2016-2017

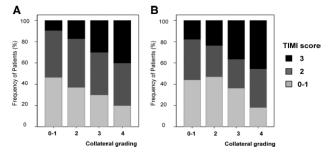
Time and Diffusion Lesion Size in Major Anterior Circulation Ischemic Strokes


Reza Hakimelahi, MD; Behroze A. Vachha, MD, PhD; William A. Copen, MD; Giacomo D.E. Papini, MD; Julian He, MD; Mahmoud M. Higazi, MD; Michael H. Lev, MD; Pamela W. Schaefer, MD; Albert J. Yoo, MD; Lee H. Schwamm, MD; R. Gilberto González, MD, PhD

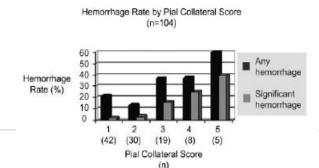


Time and Diffusion Lesion Size in Major Anterior Circulation Ischemic Strokes

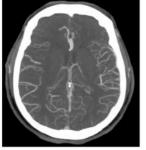
Reza Hakimelahi, MD; Behroze A. Vachha, MD, PhD; William A. Copen, MD; Giacomo D.E. Papini, MD; Julian He, MD; Mahmoud M. Higazi, MD; Michael H. Lev, MD; Pamela W. Schaefer, MD; Albert J. Yoo, MD; Lee H. Schwamm, MD; R. Gilberto González, MD, PhD

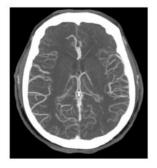


A.P. Slivka


Collateral Flow Predicts Response to Endovascular Therapy for Acute Ischemic Stroke

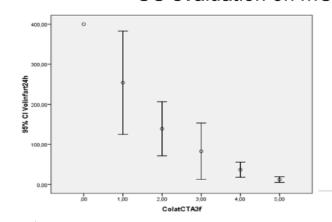
Oh Young Bang, MD; Jeffrey L. Saver, MD; Suk Jae Kim, MD; Gyeong-Moon Kim, MD; Chin-Sang Chung, MD; Bruce Ovbiagele, MD; Kwang Ho Lee, MD; David S. Liebeskind, MD


AJNR Am J Neuroradiol 30:165-70 | Jan 2009

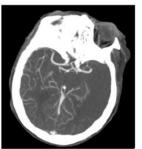

Predictors of Hemorrhage Following Intra-Arterial Thrombolysis for Acute Ischemic Stroke: The Role of Pial Collateral Formation

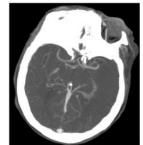
*r*aluation

Correlation with admission DWI lesion volume and poor outcome


score 0 score 1

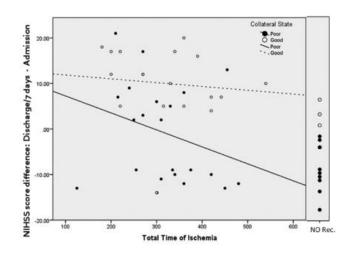

SC


Good CC: Score 5


SCOIE U

CC evaluation on mCTA

Poor CC: Score 0


Variable	OR	IC up	IC lo	р
Age	1.02	0.97	1.07	0.32
NIHSS b	1.05	0.93	1.19	0.86
ASPECTS	1.05	0.57	1.96	0.38
Recanalization	7.13	1.67	30.37	0.01
mCTA good CC	4.80	1.26	18.32	0.02

Independent predictors of good functional outcome

Extending the Time Window for Endovascular Procedures According to Collateral Pial Circulation

Marc Ribo, MD, PhD; Alan Flores, MD; Marta Rubiera, MD, PhD; Jorge Pagola, MD, PhD; Joao Sargento-Freitas, MD; David Rodriguez-Luna, MD; Pilar Coscojuela, MD; Olga Maisterra, MD; Socorro Piñeiro, MD; Francisco J. Romero, MD; Jose Alvarez-Sabin, MD, PhD; Carlos A. Molina, MD, PhD

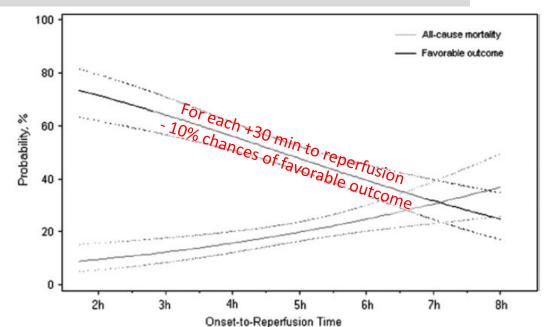
Extending the Time Window for Endovascular Procedures

Dramatic Recovery in Acute Ischemic Stroke Is Associated With Arterial Recanalization Grade and Speed

Mikael Mazighi, MD, PhD; Elena Meseguer, MD; Julien Labreuche, BST; Jean-Michel Serfaty, MD; Jean-Pierre Laissy, MD; Philippa C. Lavallée, MD; Lucie Cabrejo, MD; Céline Guidoux, MD; Bertrand Lapergue, MD; Isabelle F. Klein, MD, PhD; Jean-Marc Olivot, MD, PhD; Aymeric Rouchaud, MD; Jean-Philippe Desilles, MD; Elisabeth Schouman-Claeys, MD; Pierre Amarenco, MD

(Stroke. 2012;43:2998-3002.

Recanalization Results	No.	DR, No. (%)	P Value	OR (95% CI)*	P Value*
All patients (n=128)					
TIMI grade flow					
2 (partial)	49	7 (14.3)	< 0.001	1.00 (reference)	
3 (complete)	79	37 (46.8)		4.97 (1.98-12.51)	< 0.001
Time to recanalization, tertiles					
>296 min	43	9 (20.9)	0.002†	1.00 (reference)	
226-296 min	43	13 (30.2)		1.75 (0.65-4.77)	
<226 min	42	22 (52.4)		3.85 (1.47-10.09)	0.006†



Impact of Onset-to-Reperfusion Time on Stroke Mortality A Collaborative Pooled Analysis

Mikael Mazighi, MD, PhD; Saqib A. Chaudhry, MD; Marc Ribo, MD; Pooja Khatri, MD, MSc; David Skoloudik, MD; Maxim Mokin, MD; Julien Labreuche, BST; Elena Meseguer, MD; Sharon D. Yeatts, PhD; Adnan H. Siddiqui, MD; Joseph Broderick, MD; Carlos A. Molina, MD; Adnan I. Qureshi, MD; Pierre Amarenco, MD

(Circulation. 2013;127:1980-1985.)

480 patients with endovascular treatment & known time of reperfusion

300

330

Time From Symptom Onset to Expected Arterial Puncture, min

360

390

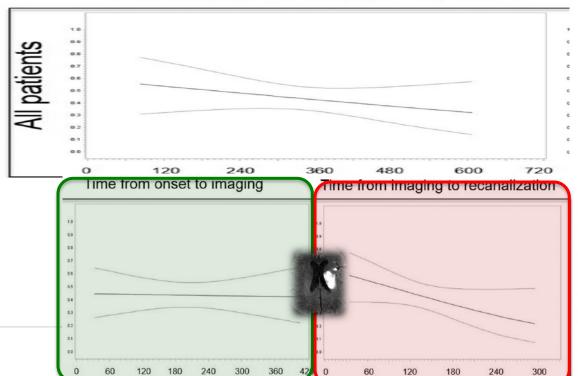
420

450

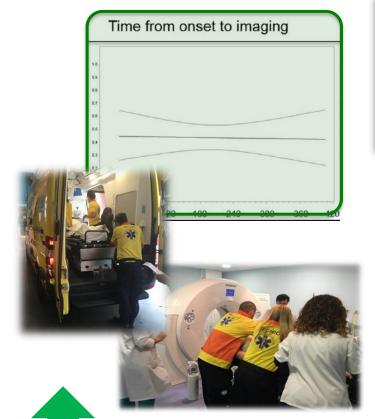
480

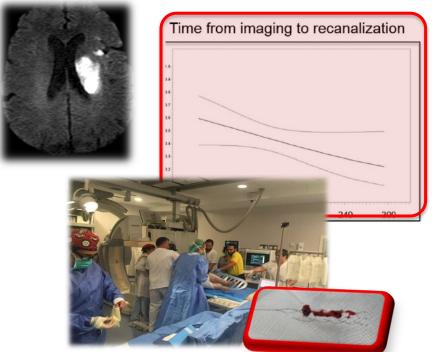
Counci

Stroke

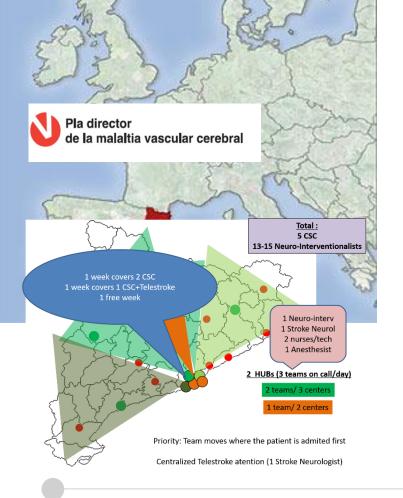

0.5

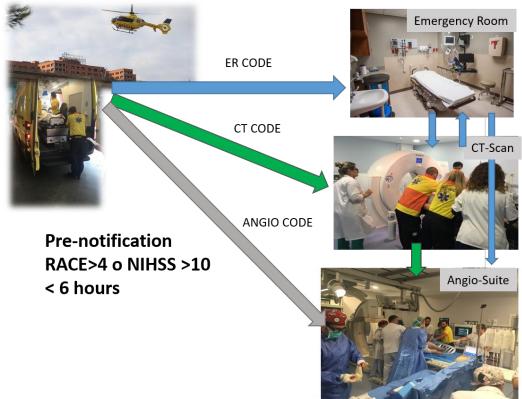
Association Between Time to Reperfusion and Outcome Is Primarily Driven by the Time From Imaging to Reperfusion


Marc Ribo, MD; Carlos A. Molina, MD; Erik Cobo, PhD; Neus Cerdà, PhD;
Alejandro Tomasello, MD; Helena Quesada, MD; Maria Angeles De Miquel, MD;
Mónica Millan, MD; Carlos Castaño, MD; Xabier Urra, MD; Luis Sanroman, MD, PhD;
Antoni Dàvalos, MD; Tudor Jovin, MD; for the REVASCAT Trial Investigators*


Stroke. 2016;47:999-1004.

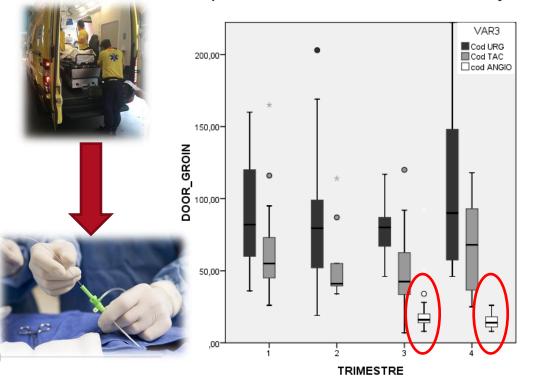
Time from onset to recanalization

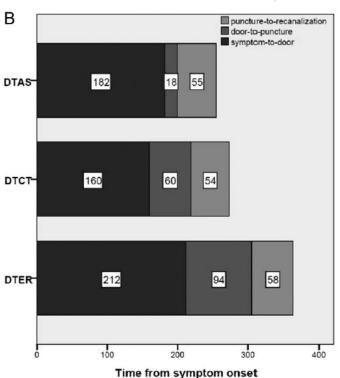




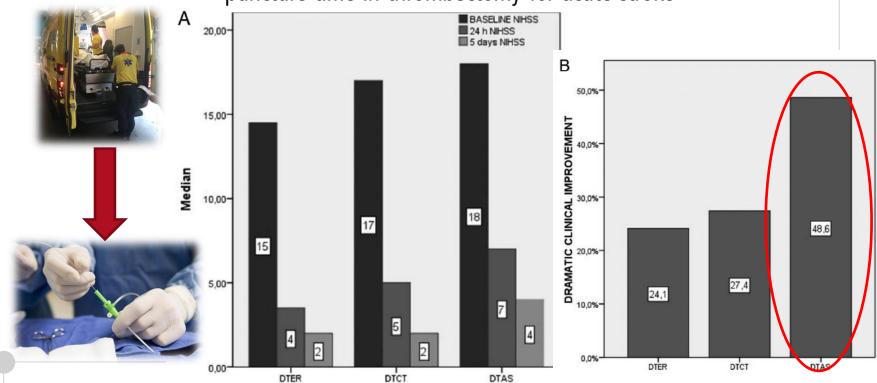
Number of candidates

Improve outcomes of treated patients





ORIGINAL RESEARCH


Direct transfer to angiosuite to reduce door-topuncture time in thrombectomy for acute stroke

ORIGINAL RESEARCH

Direct transfer to angiosuite to reduce door-topuncture time in thrombectomy for acute stroke

Interfacility Transfer Directly to the Neuroangiography Suite in Acute Ischemic Stroke Patients Undergoing Thrombectomy

Ashutosh P. Jadhav, MD, PhD; Cynthia L. Kenmuir, MD, PhD; Amin Aghaebrahim, MD; Kaustubh Limaye, MD; Lawrence R. Wechsler, MD; Maxim D. Hammer, MD; Matthew T. Starr, MD; Bradley J. Molyneaux, MD, PhD; Marcelo Rocha, MD, PhD; Francis X. Guyette, MD; Christian Martin-Gill, MD; Andrew F. Ducruet, MD; Bradley A. Gross, MD; Brian T. Jankowitz, MD; Tudor G. Jovin, MD

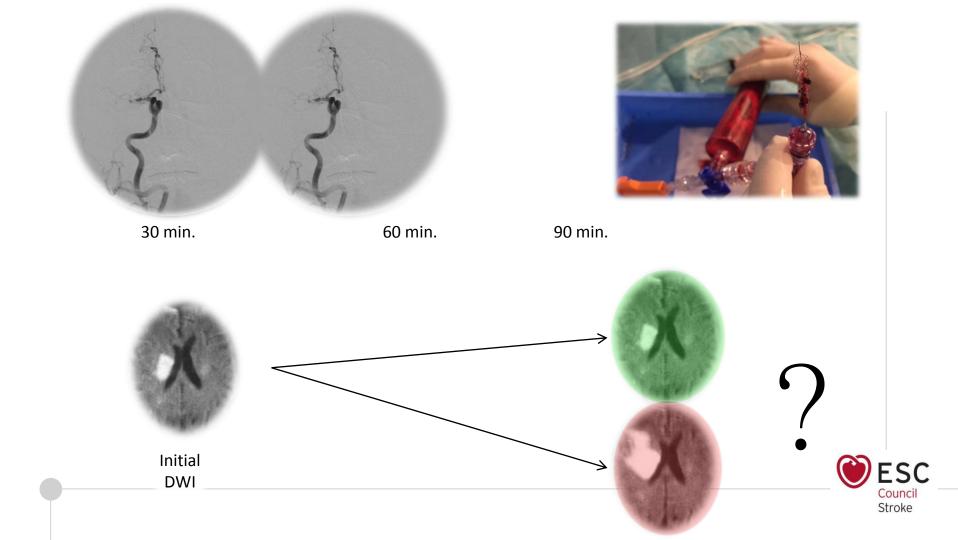

Stroke. 2017;48:1884-1889.

Table 2. Outcome Times Stratified by Treatment

	Transfer		
Variable	ED (n=150)	DAN (n=111)	<i>P</i> Value
Door to angiosuite	67 (34–72)	10 (3–6)	0.001*
Door to puncture	81 (46–91)	22 (12–25)	0.001*
Door to recanalization	125 (81–146)	66 (39–84)	0.001*
Angiosuite to access	13 (8–17)	12 (8–14)	0.177
Access to recanalization	44 (27–53)	43 (20–61)	0.883
Angiosuite to recanalization	57 (37–74)	56 (29–73)	0.548
LSW to recanalization	429 (258–468)	348 (221–394)	0.052

Mean (interquartile range). DAN indicates directly admitted to the neuroangiography suite; ED, emergency department; and LSW, last seen well. *Statistical significance at *P*<0.05.

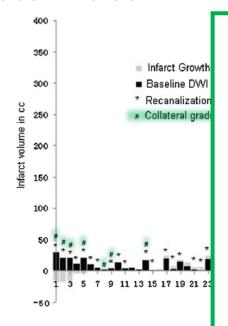
Infarct growth despite full reperfusion in endovascular therapy for acute ischemic stroke

Diogo C Haussen, ¹ Raul G Nogueira, ¹ Mohamed Samy Elhammady, ² Dileep R Yavagal, ² Mohammad Ali Aziz-Sultan, ³ Jeremiah N Johnson, ² Brandon G Gaynor, ² Shyian Jen, ¹ Seena Dehkharghani, ¹ Eric C Peterson²

Overall 35% of natients had SIG

Table 2 Procedural variables					Overall, 5.	5 70 Of patients	, Had Sid
	SIG (n=21)	No SIG (n=39)	p Value				
Time last normal to groin puncture (h)	6.8±2.7	6.9±3.3	0.83				
Duration of procedure (h)	1.4±0.7	1.25+0.0	6 0.20				
Occlusion site Cervical ICA only ICA-T MCA M1	4 (19%) 2 (10%) 11 (52%)	2 (3	Table 4 growth	Multivariat	e analysis for	predictors of signific	ant infarct
MCA M2	4 (19%)	7 (1			OR	95% CI	p Value
Tandem	2 (10%)	5 (1					
Angiogram collaterals* 0–1	4 (22%)	5 (1	Race		0.31	0.11 to 0.89	0.03
2	7 (39%)		Diabetes		1.58	0.37 to 6.72	0.53
3	6 (33%)		IV t-PA		0.19	0.04 to 0.90	0.03
4	1 (6%)	2 (7	Stent-retrieve		0.17	0.03 to 0.89	0.03
Devices							
First-generation devices	15 (71%)		$mRS \leq 2 at 3$	months	0.15	0.02 to 0.80	0.02
Stent-retrievers IA t-PA	5 (23%) 10 (47%)	19 (16 (IV t-PA, intra	venous tissue	plasminogen activ	ator; mRS, modified Rank	in Scale.

IA t-PA *47 patients.



IA t-PA, intra-arterial tissue plasminogen activator; ICA, internal carotid artery; ICA-T, ICA terminus; MCA, middle cerebral artery; SIG, significant infarct growth.

Predictors of Infarct Growth after Endovascular Therapy for Acute Ischemic Stroke

Shumei Man, MD, PhD, Junya Aoki, MD, PhD, Muhammad S. Hussain, MD, Dolora Wisco, MD, Yohei Tateishi, MD, PhD, Gabor Toth, MD, Ferdinand K. Hui, MD, and Ken Uchino, MD

PREDICTORS OF INFARCT GROWTH AFTER ENDOVASCULAR THERAPY

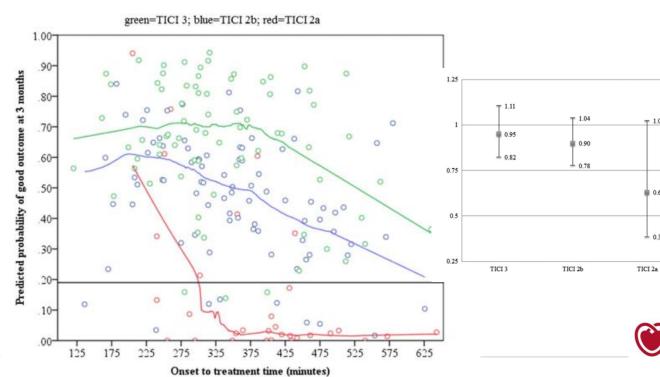
Table 4. Logistic regression of predictor	rs for DWI
no-growth versus other three groups co	ombined

	Odds ratio	Confidence interval	P value
Age	1.07/unit	.95-1.27	.317
Admission glucose	1.00/unit	.98-1.03	.768
On statin	.29	.01-5.50	.395
Initial NIHSS	1.17/unit	.94-1.58	.063
IV tPA	.38	.04-2.78	.197
ICA occlusion	.29	.05-2.31	.294
Good collaterals	4.02	1.14-19.08	.030
Initial DWI volume	.90/unit	.7399	.032
Time to recanalization	1.00/unit	.99-1.00	.281
TICI 2b and above	16.91	1.69-477.0	.002

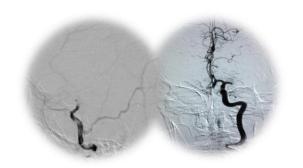
T 1.02

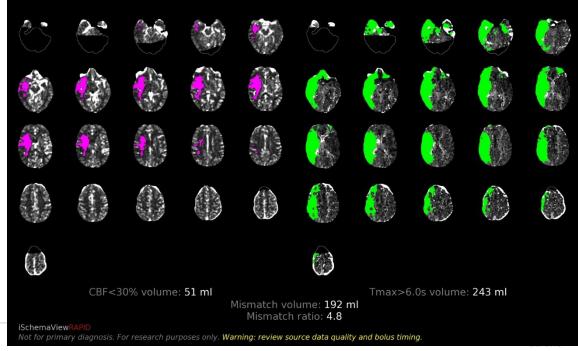
0.63

⊥ 0.39


Stroke

Complete reperfusion mitigates influence of treatment time on outcomes after acute stroke





ORIGINAL ARTICLE

Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct



ORIGINAL ARTICLE

Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct

Last Known to Be Well 6 to 12 Hr before Randomization

